The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code.
نویسندگان
چکیده
Odours are represented by specific ensembles of activated glomeruli in a combinatorial manner within the olfactory bulb of vertebrates or the antennal lobe (AL) of insects. Here, we optically measured glomerular calcium activities in vivo in the honeybee Apis mellifera during olfactory stimulation with 36 pure chemicals differing systematically in carbon chain length (C-5-10) and functional group (aldehyde, ketone, alcohol, carboxylic acid and alkane). We show their glomerular representations in 38 morphologically identified glomeruli out of the honeybee's 160. We measured the molecular receptive range of identified glomeruli averaging up to 21 individuals. Of the 38 glomeruli measured, 23 show maximal activity in a specific range of chain length. Glomeruli preferentially responding to a functional group are also always broadly tuned to particular chain lengths. Furthermore, glomeruli with similar response spectra are often direct neighbours. The results allow conclusions about the interactions between olfactory receptors and odour molecules, and about the AL network.
منابع مشابه
Odour perception in honeybees: coding information in glomerular patterns.
Major advances have been made during the past two years in understanding how honeybees process olfactory input at the level of their first brain structure dealing with odours, the antennal lobe (the insect analogue of the mammalian olfactory bulb). It is now possible to map physiological responses to morphologically identified olfactory glomeruli, allowing for the creation of a functional atlas...
متن کاملOdor-Driven Attractor Dynamics in the Antennal Lobe Allow for Simple and Rapid Olfactory Pattern Classification
The antennal lobe plays a central role for odor processing in insects, as demonstrated by electrophysiological and imaging experiments. Here we analyze the detailed temporal evolution of glomerular activity patterns in the antennal lobe of honeybees. We represent these spatiotemporal patterns as trajectories in a multidimensional space, where each dimension accounts for the activity of one glom...
متن کاملAltered Representation of the Spatial Code for Odors after Olfactory Classical Conditioning Memory Trace Formation by Synaptic Recruitment
In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural code representing the learned odor by ...
متن کاملThe organization of the antennal lobe correlates not only with phylogenetic relationship, but also life history: a Basal hymenopteran as exemplar.
The structure of the brain is a consequence of selective pressures and the ancestral brain structures modified by those pressures. The Hymenoptera are one of the most behaviorally complex insect orders, and the olfactory system of honeybees (one of the most derived members) has been extensively studied. To understand the context in which the olfactory system of the Hymenoptera evolved, we perfo...
متن کاملRate code input produces temporal code output from cockroach antennal lobes.
The experiments presented here were designed to determine the origin of the temporally complex activity of antennal lobe projection neurons in the cockroach olfactory system. We determined this through the use of complex chemical stimuli that evoked neural activity recorded extracellularly from olfactory sensory neurons and intracellularly from antennal lobe projection neurons in the cockroach ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 11 11 شماره
صفحات -
تاریخ انتشار 1999